

CRUISE REPORT

R/V Aranda

Cruise 2/2016

Combine1 Leg 2/2016 25. January - 5. February 2016

This report is based on preliminary data and is subject to changes.

Finnish Environment Institute Mechelininkatu 34a P.O. Box 140 FI-00251 Helsinki Finland http://www.syke.fi/en Finnish Meteorological Institute Erik Palménin aukio 1 P.O. Box 503 FI-00101 Helsinki Finland http://en.ilmatieteenlaitos.fi/

Cruise 2/2015, Combine1 Leg 2 25th January – 5th February 2016

Chief scientist: Juha Flinkman

INTRODUCTION

The aim of the Cruise was to monitor hydrography and nutrient situation in the Baltic Sea according to the HELCOM/MONAS Combine programme (Combine1). In addition, since a major inflow of saline water into the Baltic Sea occurred during Dec 2014 – Jan 2015, the cruise station network was extended to Arkona and Bornholm basins to capture the situation. C1 Leg 2 covered Western GoF, Archipelago Sea (AS), Bothnian Sea (BS), Bothnian Bay (BB), Åland Sea (ÅS) and Northeastern, Central and Southern Baltic Proper (BP) during 25th Jan to 5th Feb 2016. Altogether 72 stations were visited during C1 Leg2. At every station CTD, O2 profile, pH and nutrients were measured. In addition to the CTD profile, salinity and temperature were measured separately from 1m to bottom sample. Additional samples for QA measurements werte taken at several stations.

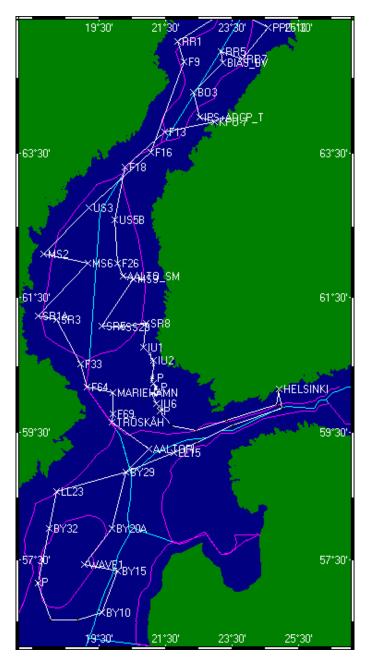


Figure 1. Cruise route of R/V Aranda during the cruise Combine1. Route marked in white, territorial water boundaries in purple, EEZ in blue.

SUMMARY

Winter 2015-2016 proved to be warmer than the previous one. After the major inflow event Dec 2014 – Jan-Feb 2015, subsequent smaller inflow were detected during this winter, which was characterized by stormy weather periods, significant rainfall and high temperatures all through the winter. This caused increase in riverine flow to the sea, which resulted in increased nutrient loading. Sea ice cover was practically missing outside costal areas of eastern GoF and GoB. Conditions in Baltic Proper were rather similar to previous winter despite additional smaller saline water inflow. Bornholm and Arakona basins contained saline water of even 24PSU in near bottom layers, and were well oxygenated. However, already at Gotland Deep the deep water was anoxic again. In the ÅS and Bay of Bothnia system, which are separated from the BP by the Salpausselkä sill, the deep water situation remains unchanged, with good oxygen conditions prevailing in deep water.

The measured nutrient concentrations of Gulf of Bothnia fit into the variation interval of the last ten years with only a few exceptions. Phosphate concentrations remained low in the Gulf of Bothnia. Nitrate concentrations are moderate in the Bothnian Sea and slightly higher in the Bothnian Bay, due to a lack of phosphate. There is a slight increase in surplus PO4 in southern Bothnian Sea. In the Baltic Proper, there is asignificant increase in PO4 top 15m layer, both in concentration and as surplus PO4 especially on Swedish coast between Gotland and Öland islands and mainland. Also in the Gulf of Finland there is a significant increase PO4 in all layers and surplus, in comparison to 2014.

OBSERVATION STATIONS

Total number of stations during the cruise was 42. The number of indexed observation stations at different sea areas was: 10 at the Baltic Proper, 3 at the Åland Sea, 15 at the Bothnian Sea and Quark, 9 at the Bothnian Bay, and 5 at the Archipelago Sea.

HYDROGRAPHIC CONDITIONS

Hydrographic data: temperature, salinity and oxygen, was measured with a Sea-Bird SBE 911plus CTD, totaling 42 CTD casts during the entire cruise. Temperature, salinity and oxygen content in different sea areas are presented below as averages of all stations in the area, and number of visited stations is also given.

Åland Sea, and the entire Golf of Bothnia system do not suffer from deep water oxygen depletion, as the sub halocline BP water can't enter the system. Oxygen content even at 290 m depth is over 5ml/l.

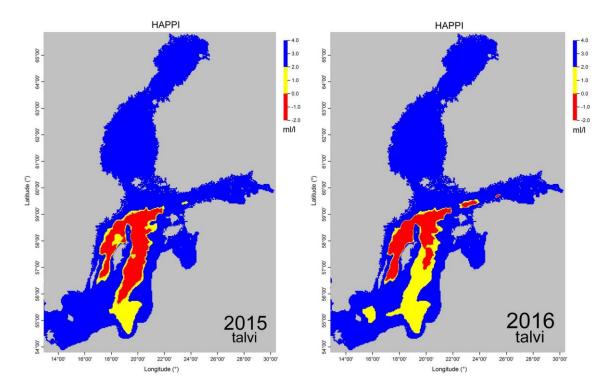



Fig. 2. Oxygen at near-botom layer in winter 2015 (left panel) and winter 2016 (right panel)

Depth (m)

SUOLA

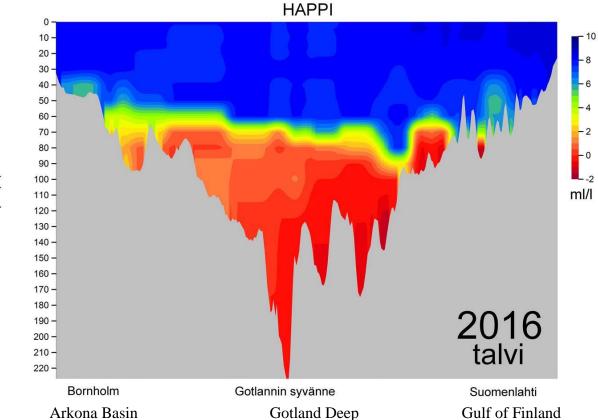
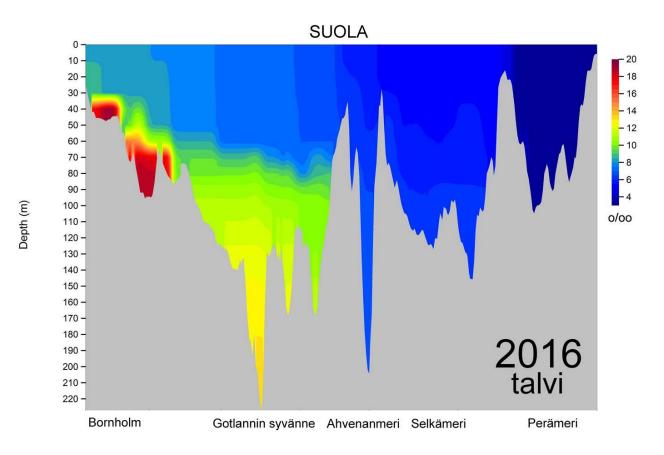



Figure 3. Salinity (upper panel) and dissolved oxygen (HAPPI, lower panel) from Arkona Basin via Gotland Deep in the Baltic Proper to Gulf of Finland in January - February 2016.

Depth (m)

5

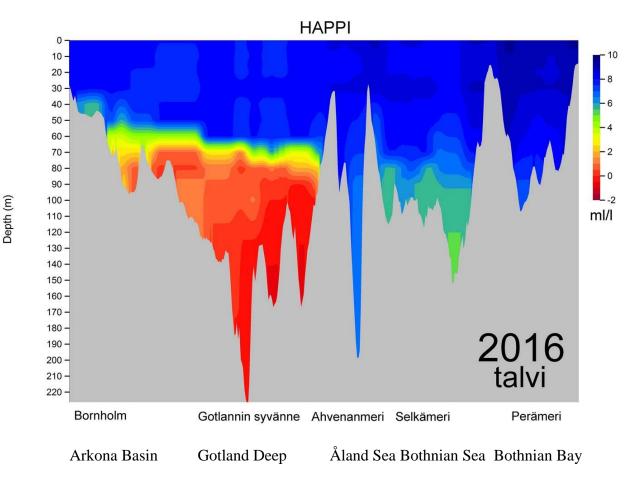


Figure 4. Salinity (upper panel) and dissolved oxygen (HAPPI, lower panel) from Arkona Basin via Gotland deep in the Baltic Proper to Bothnian Bay in January - February 2016.

NUTRIENT CONDITIONS

Nutrient concentrations $[\mu mol/l]$ were measured at all monitoring stations during the cruise. Nutrient levels are given maps below, expressed as dissolved inorganic nitroget (DIN) at 15 m depth (fig 4.), Phosphate phosphorus (PO4) in near bottom layer, and surplus PO4 (after spring bloom, calculated using Redfield ratio, fig 6.) over the entire cruise area. While there are no significant changes in DIN, there is a general increase of PO4 in deep layers in all areas including Bothnian Sea. In western Baltic Proper this increase is significant especially in top 15 m. layer and in surplus PO4.

6

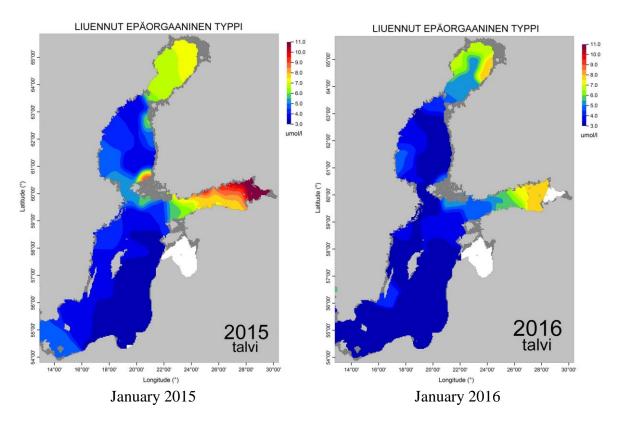


Figure 5. Dissolved inorganic nitrogen at 15m depth in winter 2015 (left panel) and winter 2016 (right panel).

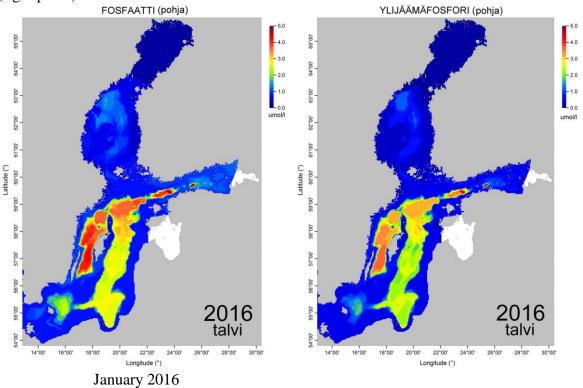


Figure 6. Phosphate phosphorus (PO4) in near bottom layer (left panel) and **surplus phosphorus** (PO4) in near bottom layer (right panel) in winter 2016.

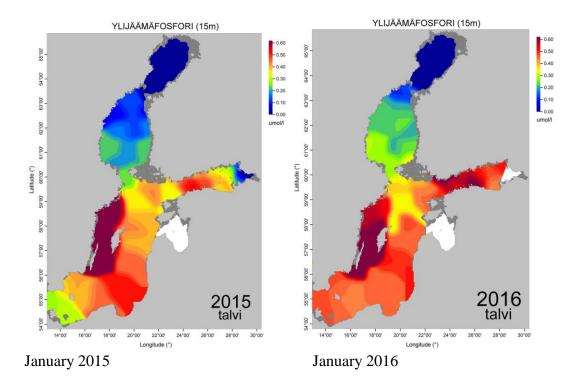


Figure 7. Surplus PO4 at top 15m. layer in winter 2015 (left panel) and in winter 2016 (right panel). Assumed situation after sprinfg bloom, calculated by using Redfield ratio.

SCIENTIFIC STAFF:	Time onboard	Organisation
Flinkman Juha	25. 1. – 5. 2. 2016	SYKE MK
Bruun Janne	25. 1. – 5. 2. 2016	SYKE MK
Hänninen Panu	25. 1. – 5. 2. 2016	SYKE MK
Varmanen Pia	25. 1. – 5. 2. 2016	SYKE MK
Lastumäki Ilkka	25. 1. – 5. 2. 2016	SYKE MK
Riikonen Jere	25. 1. – 5. 2. 2016	SYKE MK
Lehtiniemi Maiju	25. 1. – 5. 2. 2016	SYKE MK
Budimir Stjepan	25.1-1.2.2016	SYKE MK
Hietala Riikka	25. 1. – 5. 2. 2016	IL
Kosloff Pekka	25. 1. – 5. 2. 2016	IL
Roine Tuomo	25. 1. – 5. 2. 2016	IL
Gorokhova Elena	15.2.2016	Stockholm Univ

Master: Jaakko Raatikainen

Departure from HELSINKI on Monday 25.01.2016 at 12:00 Arrival to HELSINKI on Friday 05.02.2016 at 05:00 Other harbours that were visited during the cruise: Mariehamn at 01. Feb 2015

LIST OF STATIONS (coordinates in WGS-84)

Index/station	lat	lon	depth	time
01 0056 IU7	N59.4891		92.00	20160126 0556
01 0057 IU6	N59.5621		92.00 120.00	
				20160126 0734
01 0058 IU4	N60.1400		49.00	20160126 1350
01 0059 IU4_LAATU			49.00	20160126 1500
01 0060 IU2	N60.3503		50.00	20160126 1854
01 0061 SR8	N61.0760		47.00	20160127 0025
01 0062 SS29	N61.0389		107.00	20160127 0438
01 0063 SR5	N61.0499		125.00	20160127 0756
01 0064 MS9	N61.4601		101.00	20160127 1515
01 0065 AALTO_SM			113.00	20160127 1727
01 0066 F26	N61.5901		137.00	20160127 1944
01 0067 US5B	N62.3518		220.00	20160128 0130
01 0068 F18	N63.1886		103.00	20160128 0729
01 0069 F13		E021.2815	64.00	20160128 1230
01 0070 IPS+ADCP_				20160128 1620
01 0071 BO3			110.00	20160128 2001
01 0072 BIAS_BV	N64.4105 I		82.00	20160129 0015
01 0073 RR5	N64.5002		66.00	20160129 0145
01 0074 RR7	N64.4403	E023.4878	39.00	20160129 0423
01 0075 F2	N65.2304	E023.2784	92.00	20160129 1054
01 0076 RR1	N64.5803	E021.5175	85.00	20160129 1915
01 0077 F9	N64.4202	E022.0377	121.00	20160129 2150
01 0078 F16	N63.3101	E021.0378	49.00	20160130 0530
01 0079 US3	N62.4555	E019.1188	178.00	20160130 1515
01 0080 MS2	N62.0700	E017.5078	72.00	20160130 2043
01 0081 MS6	N61.5902	E019.0981	72.00	20160131 0100
01 0082 SR1A	N61.1400	E017.3979	61.00	20160131 0811
01 0083 SR3	N61.1100	E018.1380	73.00	20160131 1045
01 0084 F33	N60.3199	E018.5626	135.00	20160131 1543
01 0085 F64	N60.1134	E019.0855	287.00	20160131 1912
01 0086 F69	N59.4700	E019.5580	191.00	20160201 1210
01 0087 TROSKAH	N59.3961	E019.5300	40.00	20160201 1607
01 0088 LL23	N58.3499	E018.1384	446.00	20160202 0445
01 0089 BY32	N57.5999 I		169.00	20160202 1330
01 0090 BY38	N57.0700	E017.4000	110.00	20160202 2035
01 0091 WAVE1		E019.0289		20160203 0830
01 0092 BY15		E020.0300		20160203 1430
01 0093 BY20A		E019.5401		20160203 1956
01 0094 BY29		E020.1900		20160204 0200
01 0095 BY29 LAAT				20160204 0327
01 0096 AALTO PI				20160204 0734
01 0097 LL15		E021.4481		20160204 1330